Local holomorphic De Rham cohomology

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic de Rham cohomology

Before we continue, we need to point out some properties of algebraic de Rham cohomology. In other words, we will first prove some of the axioms before introducing the trace map and cohomology classes. Note that the axioms of a Weil cohomology theory do not provide for the existence of cohomology groups defined for nonprojective varieties, but that we may use the fact that they are defined for ...

متن کامل

Crystalline Cohomology and De Rham Cohomology

The goal of this short paper is to give a slightly different perspective on the comparison between crystalline cohomology and de Rham cohomology. Most notably, we reprove Berthelot’s comparison result without using pd-stratifications, linearisations, and pd-differential operators. Crystalline cohomology is a p-adic cohomology theory for varieties in characteristic p created by Berthelot [Ber74]...

متن کامل

Lecture 15. de Rham cohomology

(Here we really mean the integral over Σ of the form obtained by pulling back ω under the inclusion map). Now suppose we have two such submanifolds, Σ0 and Σ1, which are (smoothly) homotopic. That is, we have a smooth map F : Σ × [0, 1] → M with F |Σ×{i} an immersion describing Σi for i = 0, 1. Then d(F∗ω) is a (k + 1)-form on the (k + 1)-dimensional oriented manifold with boundary Σ × [0, 1], ...

متن کامل

Introduction to De Rham Cohomology

We briefly review differential forms on manifolds. We prove homotopy invariance of cohomology, the Poincaré lemma and exactness of the Mayer–Vietoris sequence. We then compute the cohomology of some simple examples. Finally, we prove Poincaré duality for orientable manifolds.

متن کامل

On Quantum De Rham Cohomology

We define quantum exterior product ∧h and quantum exterior differential dh on Poisson manifolds, of which symplectic manifolds are an important class of examples. Quantum de Rham cohomology is defined as the cohomology of dh. We also define quantum Dolbeault cohomology. Quantum hard Lefschetz theorem is proved. We also define a version of quantum integral, and prove the quantum Stokes theorem. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Analysis and Geometry

سال: 2010

ISSN: 1019-8385,1944-9992

DOI: 10.4310/cag.2010.v18.n2.a4